Corporate Governance at the Crossroads of AI Assessing Necessity, Disruption, and Strategic Implementation

Main Article Content

Salma Naselhaj https://orcid.org/0009-0004-7303-9341
Fahmi Youssef

Keywords

Artificial Intelligence, Corporate Governance, Systematic Literature Review, AI Implementation Strategies

Abstract

Artificial intelligence (AI) is changing corporate governance (CG), creating a lack of consensus among studies regarding its impact. The purpose of this article is to critically explore scholars’ perspectives on AI’s transformative role in CG, from one side, and suggest the necessary strategies to ensure its responsible and effective integration from another side. The authors have conducted a systematic literature review following the PRISMA flowcharts, analysed 24 indexed journal articles and conference papers using Zotero for reference management, and VOSviewer for bibliometric analysis. The findings start by a double analysis of the AI implementation in CG - ‘nice-to-have’ or ‘must-have’ versus ‘disruption’ or ‘integration’ - categorising the literature into three groups drawing for scholars: ‘enhancers’, ‘integrators’, ‘pioneers’ and a fourth category perceived by the authors, ‘catalysts’. In addition, a set of five strategies for optimising AI use is proposed: ethical frameworks, strengthened governance, skills development, transparency and control mechanisms, and aligning AI with strategic objectives. This study aims to fill two inter-correlated research gaps: exploring how AI is perceived in governance contexts and its potential to integrate with or disrupt traditional structures and establishing a theoretical intersection between the ‘governance of AI’ and the ‘governance by AI’.

Abstract 168 | 1068-PDF-v13n11pp360-383 Downloads 9

References

Abdellatif, E. M., Saleh, S. A. F., & Hamed, H. N. (2023). Corporate Financial Performance Prediction Using Artificial Intelligence Techniques. In Magdi, D., El-Fetouh, A.A., Mamdouh, M., Joshi, A. (Eds.) Green Sustainability: Towards Innovative Digital Transformation. ITAF 2023. Lecture Notes in Networks and Systems, 753, Singapore: Springer. Scopus. https://doi.org/10.1007/978-981-99-4764-5_3
ABS Journal Ranking 2021. (n.d.). Journal Ranking Portal. https://journalranking.org/
Albalawee, N. & Fahoum, A. A. (2024). A novel legal analysis of Jordanian corporate governance legislation in the age of artificial intelligence. Cogent Business and Management, 11(1). Scopus. https://doi.org/10.1080/23311975.2023.2297465
Ali, K., Alzaidi, M., Al-Fraihat, D., & Elamir, A. M. (2023). Artificial Intelligence: Benefits, Application, Ethical Issues, and Organizational Responses. In Nagar, A.K., Singh Jat, D., Mishra, D.K., Joshi, A. (Eds.) Intelligent Sustainable Systems. Lecture Notes in Networks and Systems, 578. Singapore: Springer. Scopus. https://doi.org/10.1007/978-981-19-7660-5_62
Al-Swidi, A. K., Al-Hakimi, M. A., Al Koliby, I. S., Hasan, M. B., & Abdul-Talib, A.-N. (2024). The role of digital transformation in boosting CSR-driven green innovation among Yemeni manufacturing SMEs. Discover Sustainability, 5(1). Scopus. https://doi.org/10.1007/s43621-024-00506-w
Bareis, J. (2024). The trustification of AI. Disclosing the bridging pillars that tie trust and AI together. Big Data & Society, 11(2). https://doi.org/10.1177/20539517241249430
Binh, N. T. T. (2024). An application of artificial neural networks in corporate social responsibility decision making. Intelligent Systems in Accounting, Finance and Management, 31(1). Scopus. https://doi.org/10.1002/isaf.1542
Bostrom, N. (2014). Superintelligence: Paths, Dangers, Strategies. Oxford University Press.
Briner, R. B., & Denyer, D. (2012). Systematic review and evidence synthesis as a practice and scholarship tool. In The Oxford handbook of evidence-based management (pp. 112–129). Oxford University Press.
Bruner, C. M. (2022). Artificially intelligent boards and the future of Delaware corporate law. Journal of Corporate Law Studies, 22(2), 783–805. Scopus. https://doi.org/10.1080/14735970.2022.2153965
Bukht, R., & Heeks, R. (2017). Defining, Conceptualising and Measuring the Digital Economy. https://research.manchester.ac.uk/en/publications/defining-conceptualising-and-measuring-the-digital-economy
Casares, A. P. (2018). The brain of the future and the viability of democratic governance: The role of artificial intelligence, cognitive machines, and viable systems. Futures, 103, 5–16. https://doi.org/10.1016/j.futures.2018.05.002
Chadegani, A. A., Salehi, H., Yunus, M. M., Farhadi, H., Fooladi, M., Farhadi, M., & Ebrahim, N. A. (2013). A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases. Asian Social Science, 9(5), p18. https://doi.org/10.5539/ass.v9n5p18
Charreaux, G. (2002). L'actionnaire Comme Apporteur de Ressources Cognitives. Revue Française de Gestion, 141(5), 77-107. https://www.cairn.info/revue-francaise-de-gestion-2002-5-page-77.htm
Charreaux, G. (2005). Pour une gouvernance d’entreprise « comportementale ». Une réflexion exploratoire... Revue Française de Gestion, 31(157), 215–238. https://doi.org/10.3166/rfg.157.215-238
Charreaux, G. (2007). La valeur partenariale: Vers une mesure opérationnelle...: Comptabilité Contrôle Audit, Tome 13(1), 7–45. https://doi.org/10.3917/cca.131.0007
Cihon, P., Schuett, J., & Baum, S. D. (2021). corporate governance of artificial intelligence in the public interest. Information (Switzerland), 12(7). Scopus. https://doi.org/10.3390/info12070275
Cui, X., Xu, B., & Razzaq, A. (2022). Can Application of Artificial Intelligence in Enterprises Promote the Corporate governance? Frontiers in Environmental Science, 10. Scopus. https://doi.org/10.3389/fenvs.2022.944467
Daidai, F., & Tamnine, L. (2023). Artificial intelligence and corporate governance. In Koranteng F.N., Baghaei N., & Gram-Hansen S.B. (Eds.), CEUR Workshop Proceedings. 3474. 18th International Conference on Persuasive Technology, Eindhoven, Netherlands, 19-21 April 2023. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85173563256&partnerID=40&md5=cf630a302cd1855504f9f619de30d3f5
Eroğlu, M., & Karatepe Kaya, M. (2022). Impact of Artificial Intelligence on Corporate Board Diversity Policies and Regulations. European Business Organization Law Review, 23(3), 541–572. Scopus. https://doi.org/10.1007/s40804-022-00251-5
Fama, E. F., & Jensen, M. C. (1983). Agency Problems and Residual Claims. The Journal of Law and Economics, 26(2), 327–349. https://doi.org/10.1086/467038
Fama, E. F., & Jensen, M. C. (1998). Separation of Ownership and Control. SSRN Scholarly Paper 94034. https://doi.org/10.2139/ssrn.94034
Fenwick, M., McCahery, J. A., & Vermeulen, E. P. M. (2019). The End of ‘Corporate’ Governance: Hello ‘Platform’ Governance. European Business Organization Law Review, 20(1), 171–199. https://doi.org/10.1007/s40804-019-00137-z
Gouiaa, R., & Huang, R. (2024). How do corporate governance , artificial intelligence, and innovation interact? Findings from different industries. Risk Governance and Control: Financial Markets and Institutions, 14(1), 35–52. Scopus. https://doi.org/10.22495/rgcv14i1p3
Gow, I. D., Larcker, D. F., & Zakolyukina, A. A. (2022). How Important is Corporate governance? Evidence from Machine Learning. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4231644
Haenlein, M., & Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. California Management Review, 61(4), 5–14. https://doi.org/10.1177/0008125619864925
Hanisch, M., Goldsby, C. M., Fabian, N. E., & Oehmichen, J. (2023). Digital governance: A conceptual framework and research agenda. Journal of Business Research, 162. Scopus. https://doi.org/10.1016/j.jbusres.2023.113777
Herrmann, H. (2023). What’s next for responsible artificial intelligence: A way forward through responsible innovation. Heliyon, 9(3). https://doi.org/10.1016/j.heliyon.2023.e14379
Hilb, M. (2020). Toward artificial governance? The role of artificial intelligence in shaping the future of corporate governance. Journal of Management and Governance, 24(4), 851–870. https://doi.org/10.1007/s10997-020-09519-9
Hirigoyen, G., & Poulain-Rehm, T. (2017). Approche comparative des modèles de gouvernance: Une étude empirique. Revue Française de Gestion, 43(265), 107–129. https://doi.org/10.3166/rfg.2017.00144
Jensen, M. C., & Meckling, W. H. (1976). Theory of the Firm: Managerial Behaviour, Agency Costs and Ownership Structure. SSRN Scholarly Paper 94043. https://doi.org/10.2139/ssrn.94043
Kalkan, G. (2024). The Impact of Artificial Intelligence on Corporate governance. Journal of Corporate Finance Research, 18(2), 17–25. Scopus. https://doi.org/10.17323/j.jcfr.2073-0438.18.2.2024.17-25
Kampmann, D. (2024). Venture capital, the fetish of artificial intelligence, and the contradictions of making intangible assets. Economy and Society, 53(1), 39–66. https://doi.org/10.1080/03085147.2023.2294602
Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15–25. https://doi.org/10.1016/j.bushor.2018.08.004
Khan, M. A., Mazliham, M. S., Alam, M. M., Aman, N., Malik, S., Urooj, S. F., & Taj, T. (2022). An empirical mediation analysis of technological innovation based on artificial intelligence in the relationship between economic development and corporate governance mechanism. Frontiers in Environmental Science, 10. Scopus. https://doi.org/10.3389/fenvs.2022.999096
Kingsly, K. M. (2024, October 2). The Intersection of Corporate Governance and Artificial Intelligence. https://doi.org/10.2139/ssrn.4974386
Linnenluecke, M. K., Marrone, M., & Singh, A. K. (2020). Conducting systematic literature reviews and bibliometric analyses. Australian Journal of Management, 45(2), 175–194. https://doi.org/10.1177/0312896219877678
Ma, Y., Binti A. Rahim, N. S., Bt Panatik, S. A., & Li, R. (2024). Corporate governance , technological innovation, and corporate performance: Evidence from China. Heliyon, 10(11). Scopus. https://doi.org/10.1016/j.heliyon.2024.e31459
McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. AI Magazine, 27(4), Article 4. https://doi.org/10.1609/aimag.v27i4.1904
McGovern, A., Ebert-Uphoff, I., Gagne, D., & Bostrom, A. (2022). Why we need to focus on developing ethical, responsible, and trustworthy artificial intelligence approaches for environmental science. Environmental Data Science, 1. https://doi.org/10.1017/eds.2022.5
Meiryani, M., Warganegara, D. L., & Andini, V. (2023). Big Data, Machine Learning, Artificial Intelligence and Blockchain in Corporate governance . Foresight and STI Governance, 17(4), 69–78. Scopus. https://doi.org/10.17323/2500-2597.2023.4.69.78
Micheler, E., & Whaley, A. (2020). Regulatory Technology: Replacing Law with Computer Code. European Business Organization Law Review, 21(2), 349–377. https://doi.org/10.1007/s40804-019-00151-1
Munn, Z., Peters, M. D. J., Stern, C., Tufanaru, C., McArthur, A., & Aromataris, E. (2018). Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Medical Research Methodology, 18(1), 143. https://doi.org/10.1186/s12874-018-0611-x
Munn, Z., Stern, C., Aromataris, E., Lockwood, C., & Jordan, Z. (2018). What kind of systematic review should I conduct? A proposed typology and guidance for systematic reviewers in the medical and health sciences. BMC Medical Research Methodology, 18(1), 5. https://doi.org/10.1186/s12874-017-0468-4
Novelli, C., Taddeo, M., & Floridi, L. (2023). Accountability in artificial intelligence: What it is and how it works. AI & Society, 39, 1871–1882. https://doi.org/10.1007/s00146-023-01635-y
Ouchi, W. G. (1979). A Conceptual Framework for the Design of Organizational Control Mechanisms. Management Science, 25(9), 833–848. http://links.jstor.org/sici?sici=0025-1909%28197909%2925%3A9%3C833%3AACFFTD%3E2.0.CO%3B2-L
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 71. https://doi.org/10.1136/bmj.n71
Papyshev, G., & Yarime, M. (2023). The state’s role in governing artificial intelligence: Development, control, and promotion through national strategies. Policy Design And Practice, 6(1), 79–102. https://doi.org/10.1080/25741292.2022.2162252
Praful Bharadiya, J. (2023). A Comparative Study of Business Intelligence and Artificial Intelligence with Big Data Analytics. American Journal of Artificial Intelligence, 7(1), 24-30. https://doi.org/10.11648/j.ajai.20230701.14
Radu, R. (2021). Steering the governance of artificial intelligence: National strategies in perspective. Policy And Society, 40(2), 178–193. https://doi.org/10.1080/14494035.2021.1929728
Rajan, R. G., & Zingales, L. (2003). The great reversals: The politics of financial development in the twentieth century. Journal of Financial Economics, 69(1), 5–50. Scopus. https://doi.org/10.1016/S0304-405X(03)00125-9
Rane, N. L., Choudhary, S. P., & Rane, J. (2024). Artificial Intelligence-driven corporate finance: Enhancing efficiency and decision-making through machine learning, natural language processing, and robotic process automation in corporate governance and sustainability. Studies in Economics and Business Relations, 5(2), 1–22. https://doi.org/10.48185/sebr.v5i2.1050
Russell, S., & Norvig, P. (2021). Artificial Intelligence: A Modern Approach, Global Edition. Pearson Higher Ed.
Shen, W. (2022). Analysis of the application of artificial intelligence technology in the protection of corporate governance rights and interests. Frontiers in Psychology, 13. Scopus. https://doi.org/10.3389/fpsyg.2022.966689
Shipilov, A., Ahn, Y., Greve, H., & Rowley, T. (2024). The impact of governance practices on firm outcomes: A machine-learning exploration. Journal of Organization Design, 13(2), 45–64. https://doi.org/10.1007/s41469-024-00165-1
Shleifer, A., & Vishny, R. W. (1997). A Survey of Corporate governance. The Journal of Finance, 52(2), 737–783. https://doi.org/10.1111/j.1540-6261.1997.tb04820.x
Simion, M., & Kelp, C. (2023). Trustworthy artificial intelligence. Asian Journal of Philosophy, 2(1), 8. https://doi.org/10.1007/s44204-023-00063-5
Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. British Journal of Management, 14(3), 207–222. https://doi.org/10.1111/1467-8551.00375
Wang, J., Song, Z., & Xue, L. (2023). Digital Technology for Good: Path and Influence—Based on the Study of ESG Performance of Listed Companies in China. Applied Sciences (Switzerland), 13(5). Scopus. https://doi.org/10.3390/app13052862
World Economic Forum. (2019). Moving First on AI Has Competitive Advantages and Risks, New Report Helps Navigate. https://www.weforum.org/press/2019/10/moving-first-on-ai-has-competitive-advantages-and-risks-new-report-helps-navigate/
Yankovskiy, R. M. (2023). Introduction of Information Technologies and Artificial Intelligence in Corporate Governance Practices in Russia: A Quantitative Study. SSRN Scholarly Paper 4652653. Social Science Research Network. https://doi.org/10.2139/ssrn.4652653
Zetzsche, D., Arner, D., Buckley, R. P., & Tang, B. W. (2020, February 1). Artificial Intelligence in Finance: Putting the Human in the Loop. CFTE Academic Paper Series: Centre for Finance, Technology and Entrepreneurship, no. 1., University of Hong Kong Faculty of Law Research Paper No. 2020/006. https://ssrn.com/abstract=353171
Zingales, L. (2000). In search of new foundations. Journal of Finance, 55(4), 1623–1653. Scopus. https://doi.org/10.1111/0022-1082.00262
Ziniuk, M., Dyeyeva, N., Bogatyrova, K., Melnychenko, S., Fayvishenko, D., & Shevchun, M. (2022). Digital transformation of corporate governance . Financial and Credit Activity: Problems of Theory and Practice, 5(46), 300–310. Scopus. https://doi.org/10.55643/fcaptp.5.46.2022.3807