Towards 5th Generation Cellular Mobile Networks

Main Article Content

Peng Cheng
Andrew R. Weily Weily
Y. Jay Guo

Keywords

5G

Abstract

Cellular mobile networks have enabled ubiquitous communications and largely changed the way we live and work. At the same time, the network itself has been undergoing significant changes in the process of meeting our ever increasing demands on data rate and quality of service. In this article, we show the path of the evolution in both standards and techniques and provide our vision for the future of the cellular networks. We review the evolution of international standards for cellular mobile networks in the last two decades, describe how the network layout has been migrating from rigid cellular architecture to random and dense small cells, and provide an in-depth discussion on potential enabling techniques for the next generation (5G) cellular networks, particularly massive MIMO and multiband base-station antennas.

Downloads

Download data is not yet available.
Abstract 83 | PDF Downloads 11

References

Ghosh, A.; Zhang, J.; Andrews, J. G. and Muhamed, R. 2010. ‘Fundamentals of LTE’. Prentice Hall, 2010
Qualcomm Incorporated. 2014. ‘LTE Advanced: Evolving & expanding into new frontiers’. White paper.
Lee, D.; Seo, H.; Clerckx, B.; Hardouin, E.; Mazzarese, D.; Nagata, S. and Sayana, K. 2012. ‘Coordinated Multipoint Transmission and Reception in LTE-Advanced: Deployment Scenarios and Operational Challenges’. IEEE Communications Magazine: 148 ? 155.
Lopez-Perez, D.; Guvenc, I.; de la Roche, G., Kountouris, M. ; Quek, T.Q.S; and Zhang, J. 2011. ‘Enhanced intercell interference coordination challenges in heterogeneous networks’. Wireless Communications, IEEE, 18(3): 22 - 30.
Zhang, J.A.; Collings, I.B. ; Chen, C.S. ; Roullet, L.; Luo, L.; Ho, Siu-Wai; and Yuan, J. 2013. "Evolving small-cell communications towards mobile-over-FTTx networks," Communications Magazine, IEEE 51(12): 92-101.
Rusek, F.; Persson, D.; Lau, B. K. ; Larsson, E. G. ; Marzetta, T. L.; Edfors, O. and Tufvesson, F. 2013. ‘Scaling up MIMO: Opportunities and challenges with very large arrays’. IEEE Signal Processing Magazine 30(1): 40?60
Ngo, H. Q. ; Larsson, E. G. and Marzetta, T. L. 2013. ‘Energy and spectral efficiency of very large multiuser MIMO systems’. IEEE Transactions on Communications 61: 1436?1449.
Jose J.; Ashikhmin, A. ; Marzetta, T. and Vishwanath, S. 2011. ‘Pilot contamination and precoding in multi-cell tdd systems’. IEEE Transactions on Wireless Communications 10(8): 2640?2651.
Hoydis, J. ; ten Brink, S. and Debbah, M. 2013. ‘Massive MIMO in the UL/DL of cellular networks: How many antennas do we need’ IEEE Journal on Selected Areas of Communications 31(2): 160?171.
Chen, Z. and Luk, K. 2009. ‘Antennas for Base Stations in Wireless Communications’. McGraw Hill.
Kathrein-Werke, KG. 2014. ‘694-6000 MHz Base Station Antennas, Filters, Combiners and Amplifiers for Mobile Communications’. Antenna Catalogue.
Boccardi, F; Heath Jr., R. W.; Lozano, A.; Marzetta, T. L. and Popovski, P. 2014. ‘Five Disruptive Technology Directions for 5G’. IEEE Communications Magazine: 74 - 80.
Roh, W.; Seol, J.; Park, J.; Lee, B.; Lee, J.; Kim, Y.; Cho, J. and Cheun, K. 2014. ‘Millimeter-Wave Beamforming as an Enabling Technology for 5G Cellular Communications: Theoretical Feasibility and Prototype Results’. IEEE Communications Magazine: 106 - 112.
Rappaport, T. S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G. N.; Schulz, J. K.; Samimi, M. and Gutierrez, F. 2013. ‘Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!’. IEEE Access 1: 335-349.