Iterative Interference Cancellation for Multi-Carrier Modulation in MIMO-DWT Downlink Transmission

Main Article Content

Yahya Harbi
Ali K. Aljanabi
Hayder Almusa
Marwa Chafii
Alister Burr


MIMO-DWT, IIC, conventional OFDM, LDPC, interative decoder


The Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) scheme represents the dominant radio interface for broadband multicarrier communication systems. However, with insufficient Cyclic Prefixes (CP), Inter-Symbol Interference (ISI) and Inter-Carrier Interference (ICI) occur due to the time-varying multipath channel. This means that the performance of the system will be degraded. In this paper, we investigate the interference problem for a MIMO Discrete Wavelet Transform (MIMO-DWT) system under the effect of the downlink LTE channel. A Low-Density Parity-Check (LDPC) decoder is used to estimate the decoded signal. The proposed iterative algorithm uses the estimated decoded signal to compute the components required for ICI/ISI interference reduction. In this paper, Iterative Interference Cancellation (IIC) is employed to mitigate the effects of interference that contaminates the received signal due to multiple antenna transmission and a multipath channel. An equalizer with minimum mean square error is considered. We compare the performance of our proposed algorithm with the traditional MIMO-OFDM scheme in terms of bit error probability under insufficient CP. Simulation results verify that significant improvements are achieved by using IIC and MIMO-IIC for both systems.


Download data is not yet available.
Abstract 87 | 426-PDF-v9n4pp75-87 Downloads 4


3GPP-TS-36.101. (2014). Technical Specification. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (3GPP TS 36.101 version 11.8.0 Release 11).
Chafii, M., Harbi, Y. J., & Burr, A. G. (2016). Wavelet-OFDM vs. OFDM: Performance comparison. 2016 23rd International Conference on Telecommunications (ICT).
Chafii, M., Palicot, J., Gribonval, R., & Bader, F. (2018). Adaptive wavelet packet modulation. IEEE Transactions on Communications, 66(7), 2947–2957.
Galli, S., & Logvinov, O. (2008). Recent Developments in the Standardization of Power Line Communications within the IEEE. IEEE Communications Magazine, 46(7), 64–71.
Harbi, Y. (2017). Enhanced Air-Interfaces for Fifth Generation Mobile Broadband Communication. Ph.D. thesis, University of York.
Harbi, Y., & Burr, A. (2014). Comparison of Discrete Wavelet and FFT-OFDM under Different Channel Conditions. In Merabti, M., Abuelma’atti, O., & Oliver C. (eds), PGNET Proceedings of the 15th Annual Postgraduate Symposium on the Convergence of Telecommunications, Networking and Broadcasting 2014. Liverpool: Liverpool John Moores University.
Harbi, Y. J., & Burr, A. G. (2016a). On ISI and ICI cancellation for FBMC/OQAM system using iterative decoding and ML detection. IEEE Wireless and Networking Conference (WCNC 2016) Track 1: PHY and Fundamentals, 1434–1439.–/10.1109/WCNC.2016.7564954
Harbi, Y. J., & Burr, A. G. (2016b). Wiener filter channel estimation for OFDM/OQAM with iterative interference cancellation in LTE channel. ICOF 2016; 19th International Conference on OFDM and Frequency Domain Technique, 17–22.
Harbi, Y. J., & Burr, A. G. (2018). IIC of the MIMO-FBMC/OQAM system using linear and SIC detection schemes in LTE channel. IEEE Wireless Communications and Networking Conference (WCNC).
Jakes, W. C. (ed.) (1974). Microwave mobile communications. Wiley, New York, 1974; re-issued by IEEE press.
Jamin, A., & Mähönen, P. (2005). Wavelet packet modulation for wireless communications. Wireless Communications and Mobile Computing, 5(2), 123–137.
Lindsey, A. R., & Dill, J. C. (1995). Wavelet packet modulation: a generalized method for orthogonally multiplexed communications. Proceedings of the Twenty-Seventh Southeastern Symposium on System Theory. 392–396.
Mahama, S., Harbi, Y. J., Burr, A. G., & Grace, D. (2019a). A Nonorthogonal Waveform Design with Iterative Detection and Decoding for Narrowband IoT Applications. European Conference on Networks and Communications (EuCNC), 315–319.
Mahama, S., Harbi, Y. J., Burr, A. G., & Grace, D. (2019b). Iterative Interference Cancellation in FBMC-QAM Systems. IEEE Wireless Communications and Networking Conference (WCNC).
Mahama, S., Harbi, Y. J., Burr, A. G., & Grace, D. (2020). Design and Convergence Analysis of an IIC-Based BICM-ID Receiver for FBMC-QAM Systems. IEEE Open Journal of the Communications Society, 1(1), 563–577.
Mallat, S. (2008). A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edition. Academic Press.
Mathew, M., Premkumar, A. B., & Lau, C. T. (2010a). Multiple Access Scheme for Multi User Cognitive Radio Based on Wavelet Transforms. 2010 IEEE 71st Vehicular Technology Conference 1–5.
Mathew, M., Premkumar, A. B., & Lau, C. T. (2010b). Multiwavelets based multi-user cognitive radio network. 2010 IEEE Conference on Communication Systems (ICCS), 772–776.
Oltean, M. (2007). Wavelet OFDM performance in flat fading channels. Scientific Bulletin of University Politehnica Timisoara, ETC Series, 52(66), 167–172.
Oltean, M., & Isar, A. (2009). On the time-frequency localization of the wavelet signals, with application to orthogonal modulations. 2009 International Symposium on Signals, Circuits and Systems (ISSCS).
Sesia, S., Toufik, I., & Baker, M. (2011). LTE — The UMTS Long Term Evolution: From Theory to Practice, 2nd edition. John Wiley.
Wornell, G. (1996). Emerging applications of multirate signal processing and wavelets in digital communications. Proceedings of the IEEE, 84(4), 586–603.
Zhang, Y., & Cheng, S. (2004). A novel multicarrier signal transmission system over multipath channel of low-voltage power line. IEEE Transactions on Power Delivery, 19(4), 1668–1672.