Urban 5G MmWave Networks: Line-of-Sight Probabilities and Optimal Site Locations

Main Article Content

Tian Han https://orcid.org/0000-0002-1573-9161
Davood Shojaei https://orcid.org/0000-0003-2152-9272
Paul Fitzpatrick https://orcid.org/0000-0002-6018-6658
Taka Sakurai
Jamie Evans https://orcid.org/0000-0003-4637-1037


Ray tracing, Line-of-sight communications, Network planning, Mixed-integer linear programming, 3D visualisation


In this work, we implemented line-of-sight (LoS) ray tracing functionality to investigate problems in millimetre-wave propagation modelling and network planning in 3D city model environments. First, we validated an existing LoS propagation probability model expressed as an exponential rule with the link distance. By fitting ray tracing simulation results under different scenarios to the model, the relationships between key parameters in the model and factors including the building density and the transmitter height were qualitatively analysed. Next, we developed a network planning framework for a multi-hop outdoor urban network by formulating a mixed-integer linear programming problem which minimises the overall deployment cost through optimal site selection. Taking the sets of potential site locations and potential links as inputs, we selected a subset of the sites that comprise a tree-structured network that satisfies all the user demands at a minimum deployment cost. We also analysed the time required for solving this optimisation problem in order to provide a prediction of the execution time for larger-sized problems.



Download data is not yet available.
Abstract 164 | 640-PDF-v11n1pp107-130 Downloads 5


3rd Generation Partnership Project (3GPP). (2022a). Physical layer procedures for data. No. 38.214 Version 17.2.0. Technical specification. Available from https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3216.
3rd Generation Partnership Project (3GPP). (2022b). Study on channel model for frequencies from 0.5 to 100 GHz. No. 38.901 Version 17.0.0. Technical report. Available from https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3173.
Aalto University, AT&T, BUPT, CMCC, Ericsson, Huawei, Intel, KT Corporation, Nokia, NTT DOCOMO, New York University, Qualcomm, Samsung, University of Bristol, & University of Southern California. (2016). 5G channel model for bands up to 100 GHz. Version 2.3. Available from http://www.5gworkshops.com/5GCM.html .
Al-Hourani, A. (2020). On the probability of line-of-sight in urban environments. IEEE Wireless Communications Letters, 9(8), 1178–1181. http://doi.org/10.1109/LWC.2020.2984497.
Andrews, J. G., Bai, T., Kulkarni, M. N., Alkhateeb, A., Gupta, A K., & Heath, R W. (2017). Modeling and analyzing millimeter wave cellular systems. IEEE Transactions on Communications, 64(1), 403–430. http://doi.org/10.1109/TCOMM.2016.2618794.
Anjinappa, C. K., Erden, F., & Guvenc, I. (2021). Base station and passive reflectors placement for urban mmWave networks. IEEE Transactions on Vehicular Technology, 70(4), 3525–3539. http://doi.org/10.1109/TVT.2021.3065221.
Ashour, M., Ibrahim, M., Elhoshy, S., Megalli, Y., El-Shabrawy, T., Hammad, H., & Rizk, M. R. M. (2016). A fast ray tracing algorithm for network planning based on relative coverage computations. In 2016 International Conference on Selected Topics in Mobile Wireless Networking (MoWNeT). http://doi.org/10.1109/MoWNet.2016.7496621.
Bai, T., Vaze, R., & Heath, R W. (2014). Analysis of blockage effects on urban cellular Networks. IEEE Transactions on Wireless Communications, 13(9), 5070–5083. http://doi.org/10.1109/TWC.2014.2331971.
Baum, D., Hansen, J., Salo, J., Del Galdo, G., Milojevic, M., & Kyosti, P. (2005). An interim channel model for beyond-3G systems: extending the 3GPP spatial channel model (SCM). In 2005 IEEE 61st Vehicular Technology Conference, 5, 3132–3136. http://doi.org/10.1109/VETECS.2005.1543924.
Benyamina, D., Hafid, A., & Gendreau, M. (2012). Wireless mesh networks design — A survey. IEEE Communications Surveys & Tutorials, 14(2), 299–310. http://doi.org/10.1109/SURV.2011.042711.00007.
Bodi, A., Blandino, S., Varshney, N., Zhang, J., Ropitault, T., Lecci, M., Testolina, P., Wang, J., Lai, C., & Gentile, C. (2021). NIST Quasi-deterministic channel realization software documentation. [Internet]. Available from https://github.com/wigig-tools/qd-realization/blob/master/docs/Documentation.pdf
Cesium. (2015a). The Cesium Platform. [Internet]. Available from https://cesium.com/platform/
Cesium. (2015b). Cesium OSM Buildings. [Internet]. Available from https://cesium.com/platform/cesium-ion/content/cesium-osm-buildings/.
Choubey, N., & Yazdan, A. (2016). Introducing Facebook’s new terrestrial connectivity systems — Terragraph and Project ARIES. [Internet]. Available from https://engineering.fb.com/2016/04/13/connectivity/introducing-facebook-s-new-terrestrial-connectivity-systems-terragraph-and-project-aries/.
Cui, Z., Guan, K., Briso-Rodriguez, C., Ai, B., & Zhong, Z. (2020). Frequency-dependent line-of-sight probability modeling in built-up environments. IEEE Internet of Things Journal, 7(1), 699–709. http://doi.org/10.1109/JIOT.2019.2947782.
Danford, T., Filiz, O., Huang, J., Karrer, B., Paluri, M., Pang, G., Ponnampalam, V., Stier-Moses, N., & Tezel, B. (2017). End-to-end planning of fixed millimeter-wave networks. arXiv. Available from https://arxiv.org/abs/1705.07249.
He, D., Ai, B., Guan, K., Wang, L., Zhong, Z., & Kurner, T. (2019). The design and applications of high-performance ray-tracing simulation platform for 5G and beyond wireless communications: A tutorial. IEEE Communications Surveys & Tutorials, 21(1), 10–27. http://doi.org/10.1109/COMST.2018.2865724.
International Telecommunication Union (ITU). (2021). Attenuation in vegetation. Number P.833-10. Available from https://www.itu.int/rec/R-REC-P.833/en.
Jabrayilov, A. (2020). On the hop-constrained Steiner tree problems. arXiv. Available from https://arxiv.org/abs/2007.07405
Jamsa, T., Medbo, J., Kyosti, P., Haneda, K., & Raschkowski, L. (2016). The 5G wireless propagation channel models. In M. Dohler & T. Nakamura (Authors) & A. Osseiran, J. Monserrat & P. Marsch (Eds.), 5G Mobile and Wireless Communications Technology (pp. 357–380). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781316417744.014
Kennington, J. L., Olinick, E., & Rajan, D. (2011). Wireless Network Design: Optimization Models and Solution Procedures. Springer.
Lai, C., Sun, R., Gentile, C., Papazian, P. B., Wang, J., & Senic, J. (2019). Methodology for multipath-component tracking in millimeter-Wave Channel modeling. IEEE Transactions on Antennas and Propagation, 67(3), 1826–1836. http://doi.org/10.1109/TAP.2018.2888686.
Lalwani, S. (2018). Economics of Terragraph Backhaul for ATT’s 5G network in San Jose. [Internet]. Available from https://www.digitaltwinsim.com/terragraph.
Lecci, M., Testolina, P., Giordani, M., Polese, M., Ropitault, T., Gentile, C., Varshney, N., Bodi, A., & Zorzi, M. (2020). Simplified ray tracing for the millimeter wave channel: A performance evaluation. 2020 Information Theory and Applications Workshop (ITA). http://doi.org/10.1109/ITA50056.2020.9244950.
Lecci, M., Testolina, P., Polese, M., Giordani, M., & Zorzi, M. (2021). Accuracy versus complexity for mmWave ray-tracing: A full stack perspective. IEEE Transactions on Wireless Communications, 20(12), 7826–7841. http://doi.org/10.1109/TWC.2021.3088349.
MathWorks. (2019). intlinprog Mixed-integer linear programming (MILP). [Internet]. Available from https://au.mathworks.com/help/optim/ug/intlinprog.html.
MathWorks. (2022). Optimization Toolbox. [Internet]. Available from https://au.mathworks.com/help/optim/index.html?s_tid=CRUX_lftnav.
McKown, J., & Hamilton, R. (1991). Ray tracing as a design tool for radio networks. IEEE Network, 5(6), 27–30. http://doi.org/10.1109/65.103807.
Meinila, J., Kyosti, P., Jamsa, T., & Hentila, L. (2009). WINNER II Channel Models. In M. Dottling, W. Mohr & A. Osseiran (Eds.), Radio Technologies and Concepts for IMT-Advanced (pp. 357–380). John Wiley & Sons. https://doi.org/10.1002/9780470748077.ch3
Mellios, E., Nix, A. R., & Hilton, G. S. (2012). Ray-tracing urban macrocell propagation statistics and comparison with WINNER II/+ measurements and models. In 2012 Loughborough Antennas Propagation Conference (LAPC). http://doi.org/10.1109/LAPC.2012.6403073.
Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385. http://doi.org/10.1109/JPROC.2014.2299397.
Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G. N., Schulz, J. K., Samimi, M., & Gutierrez, F. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335–349. http://doi.org/10.1109/ACCESS.2013.2260813.
Thomas, T. A., Rybakowski, M., & Krysiak, P. (2016). Preliminary 5G suburban micro (SMi) channel model for different foliage conditions. In 2016 IEEE Globecom Workshops (GC Wkshps). http://doi.org/10.1109/GLOCOMW.2016.7849007.
Thomas, T. A., & Vook, F. W. (2014). System level modeling and performance of an outdoor mmWave local area access system. In 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC). http://doi.org/10.1109/PIMRC.2014.7136142.
Winter, P. (1987). Steiner problem in networks: A survey. Networks, 17(2), 129–167. https://doi.org/10.1002/net.3230170203.
Zhang, Z., Ryu, J., Subramanian, S., & Sampath, A. (2015). Coverage and channel characteristics of millimeter wave band using ray tracing. In 2015 IEEE International Conference on Communications (ICC). http://doi.org/10.1109/ICC.2015.7248516.