An Artificial Immune System-Based Strategy to Enhance Reputation in MANETs

Main Article Content

Lincy Elizebeth Jim http://orcid.org/0000-0002-8458-3770
Mark A Gregory http://orcid.org/0000-0003-4631-6468

Keywords

MANET, Trust, Reputation, Selfish, PAMP, Artificial Immune System

Abstract

In Mobile Ad hoc Networks (MANETs) the nodes act as a host as well as a router, thereby forming a self-organizing network that does not rely upon fixed infrastructure, other than gateways to other networks. Security is important for MANETs and trust computation is used to improve collaboration between nodes. This paper proposes an Artificial Immune System-based reputation (AISREP) algorithm to compute trust and thereby provide a resilient reputation mechanism. In this paper, the presence of selfish nodes are considered. Selfish nodes are known to enhance the reputation of their selfish peers which in turn causes packet loss. In the event of the packet being routed using the AISREP algorithm, even though the number of selfish nodes increases, this algorithm identifies the selfish nodes and avoids using the selfish nodes from the routing path thereby improving the overall performance of the network.

Downloads

Download data is not yet available.
Abstract 916 | 176-PDF-pp68-82 Downloads 18

References

Abdelhaq, M., Hassan, R., & Alsaqour, R. (2011). Using dendritic cell algorithm to detect the resource consumption attack over MANET. Paper presented at the International Conference on Software Engineering and Computer Systems. https://link.springer.com/chapter/10.1007/978-3-642-22203-0_38

Aickelin, U., & Cayzer, S. (2008). The danger theory and its application to artificial immune systems. arXiv preprint arXiv:0801.3549. https://arxiv.org/abs/0801.3549

Basagni, S., Conti, M., Giordano, S., & Stojmenovic, I. (2013). Mobile ad hoc networking. Hoboken: John Wiley & Sons. doi: 10.1002/0471656895

Buchegger, S., & Le Boudec, J.-Y. (2005). Self-policing mobile ad hoc networks by reputation systems. IEEE Communications Magazine, 43(7), 101-107. https://ieeexplore.ieee.org/abstract/document/1470831

Forrest, S., Perelson, A. S., Allen, L., & Cherukuri, R. (1994). Self-nonself discrimination in a computer. Research in Security and Privacy, 1994. Proceedings, 1994 IEEE Computer Society Symposium. https://www.cs.unm.edu/~immsec/publications/virus.pdf

Greensmith, J., & Aickelin, U. (2008). The deterministic dendritic cell algorithm. Paper presented at the International Conference on Artificial Immune Systems. https://dl.acm.org/citation.cfm?id=1428224

Gupta, N., & Singh, S. N. (2016). Wormhole attacks in MANET. Paper presented at the Cloud System and Big Data Engineering (Confluence), 2016 6th International Conference. https://ieeexplore.ieee.org/abstract/document/7508120

Henderson, T. R., Lacage, M., Riley, G. F., Dowell, C., & Kopena, J. (2008). Network simulations with the ns-3 simulator. SIGCOMM demonstration, 14(14), 527. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.415.6550&rep=rep1&type=pdf

Ishmanov, F., & Kim, S. W. (2011). A secure trust establishment in wireless sensor networks. Paper presented at the Electrical Engineering and Informatics (ICEEI), 2011 International Conference. https://ieeexplore.ieee.org/abstract/document/6021517

Jhaveri, R. H., Patel, S. J., & Jinwala, D. C. (2012). Improving route discovery for AODV to prevent blackhole and grayhole attacks in MANETs. INFOCOMP, 11(1), 1-12. http://www.dcc.ufla.br/infocomp/index.php/INFOCOMP/article/view/362/346

Matzinger, P. (2001). Essay 1: the Danger model in its historical context. Scandinavian journal of immunology, 54(1?2),4-9. https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3083.2001.00974.x

McCoy, D., Sicker, D., & Grunwald, D. (2007). A mechanism for detecting and responding to misbehaving nodes in wireless networks. Paper presented at the Networking Technologies for Software Define Radio Networks, 2007 2nd IEEE Workshop. https://ieeexplore.ieee.org/abstract/document/4348973

Mei, J.-P., Yu, H., Liu, Y., Shen, Z., & Miao, C. (2014). A social trust model considering trustees’ influence. Paper presented at the International Conference on Principles and Practice of Multi-Agent Systems. https://link.springer.com/chapter/10.1007/978-3-319-13191-7_29

Murthy, S., & Garcia-Luna-Aceves, J. J. (1996). An efficient routing protocol for wireless networks. Mobile Networks and Applications, 1(2), 183-197. https://link.springer.com/article/10.1007/BF01193336

Perkins, C., Belding-Royer, E., & Das, S. (2003). Ad hoc on-demand distance vector (AODV) routing (2070-1721). IETF RFC 3561. https://www.ietf.org/rfc/rfc3561.txt

Raffo, D. (2005). Security schemes for the OLSR protocol for ad hoc networks. Université Pierre et Marie Curie-Paris VI. https://tel.archives-ouvertes.fr/tel-00010678/

Saha, H. N., Bhattacharyya, D., Banerjee, B., Mukherjee, S., Singh, R., & Ghosh, D. (2013). A review on attacks and secure routing protocols in MANET. International Journal of Innovative Research and Review, 1(2), 12-36. https://www.researchgate.net/profile/Himadri_Saha2/publication/289510067_A_REVIEW_ON_ATTACKS_AND_SECURE_ROUTING_PROTOCOLS_IN_MANET/links/568d817808aef987e56601aa.pdf

Schütte, M. (2006). Detecting selfish and malicious nodes in MANETs. Paper presented at the Seminar: sicherheit in selbstorganisierenden netzen, hpi/universität potsdam, sommersemester. https://pdfs.semanticscholar.org/e733/fc1753454231559f6b47906c2d2cf73390c4.pdf

Sen, J., Chandra, M. G., Harihara, S., Reddy, H., & Balamuralidhar, P. (2007). A mechanism for detection of gray hole attack in mobile Ad Hoc networks. Paper presented at the Information, Communications & Signal Processing, 2007 6th International Conference. https://ieeexplore.ieee.org/abstract/document/4449664

Shaikh, R. A., Jameel, H., d'Auriol, B. J., Lee, H., Lee, S., & Song, Y.-J. (2009). Group-based trust management scheme for clustered wireless sensor networks. IEEE transactions on parallel and distributed systems, 20(11), 1698-1712. https://ieeexplore.ieee.org/abstract/document/4721432

Sharma, N., & Sharma, A. (2012). The black-hole node attack in MANET. Paper presented at the Advanced Computing & Communication Technologies (ACCT), 2012 Second International Conference. https://ieeexplore.ieee.org/abstract/document/6168430

Steinman, R. M., & Cohn, Z. A. (1973). Identification of a novel cell type in peripheral lymphoid organs of mice: I. Morphology, quantitation, tissue distribution. Journal of Experimental Medicine, 137(5), 1142-1162. https://www.ncbi.nlm.nih.gov/pubmed/4573839

Tan, H. C., Ma, M., Labiod, H., Chong, P. H. J., & Zhang, J. (2017). A non?biased trust model for wireless mesh networks. International Journal of Communication Systems, 30(9), e3200. https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.3200

Twycross, J., & Aickelin, U. (2005). Towards a conceptual framework for innate immunity. Paper presented at the International Conference on Artificial Immune Systems. https://dl.acm.org/citation.cfm?id=2156125

Xiong, L., & Liu, L. (2003). A reputation-based trust model for peer-to-peer ecommerce communities. Proceedings of the 4th ACM conference on Electronic commerce. https://dl.acm.org/citation.cfm?id=779972

Yih-Chun, H., & Perrig, A. (2004). A survey of secure wireless ad hoc routing. IEEE Security & Privacy, 2(3), 28-39. https://dl.acm.org/citation.cfm?id=1009287