Technology-enabled Personalization for Mobile Banking Services Literature Review and Theoretical Framework

Main Article Content

Moetez Khemiri
Rim Jallouli

Keywords

M-Banking, UTAUT, Technology-enabled Personalization, Mobile services, Literature Review

Abstract

New technologies are giving very interesting potential to the personalization of products and services, in particular of mobile services. The study of the literature shows that technology-based personalization is an important factor in the adoption of mobile services. However, previous researchers are not unanimous as to the nature of this role: some studies confirm the moderating or mediating effect of personalization on the relationship between the adoption factors stated in the Unified Technology Acceptance and Utilization Theory (UTAUT) and the intention to adopt technology-based services. Other researchers consider that personalization rather exerts a causal relationship on the adoption of technology-based services. This paper undertakes a literature review with the aim of clarifying the impact of new technologies, such as artificial intelligence, Big Data, Internet of Things and Block Chain, on the personalization of mobile banking services. Moreover, this study presents a synthesis of previous research examining the role of personalization in relation to the factors affecting adoption and the intention to adopt mobile banking. Finally, this research proposes a conceptual model that can serve as a basis for future empirical research in the context of mobile services. Results and discussion could guide future empirical research in this area.

Downloads

Download data is not yet available.
Abstract 251 | 545-PDF-v10n2pp173-194 Downloads 8

References

Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T
Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International Journal of Information Management, 37(3), 99–110. https://doi.org/10.1016/j.ijinfomgt.2017.01.002
Alalwan, A. A., Baabdullah, A. M., Rana, N. P., Dwivedi, Y. K., & Kizgin, H. (2019). Examining the Influence of Mobile Store Features on User E-Satisfaction: Extending UTAUT2 with Personalization, Responsiveness, and Perceived Security and Privacy. In Conference on e-Business, e-Services and e-Society, 50–61. Springer, Cham. https://doi.org/10.1007/978-3-030-29374-1_5
Albashrawi, M., & Motiwalla, L. (2015). The moderating effect of privacy and personalization in mobile banking: a structural equation modeling analysis. https://aisel.aisnet.org/amcis2015/AdoptionofIT/GeneralPresentations/31
Albashrawi, M., Kartal, H., Oztekin, A., & Motiwalla, L. (2017). The impact of subjective and objective experience on mobile banking usage: An analytical approach. In Proceedings of the of the 50th Hawaii International Conference on System Sciences. https://doi.org/10.24251/HICSS.2017.137
Altobishi, T., Erboz, G., & Podruzsik, S. (2018). E-Banking effects on customer satisfaction: The survey on clients in Jordan Banking Sector. International Journal of Marketing Studies, 10(2), 151–161. https://doi.org/10.5539/ijms.v10n2p151
Antoniadis, I., Kontsas, S., & Spinthiropoulos, K. (2019). Blockchain Applications in Marketing. The Proceedings of 7th ICCMI. https://www.researchgate.net/publication/337439697_Blockchain_Applications_in_Marketing
Asif, M., & Krogstie, J. (2013). Role of personalization in mobile services adoption. In Proceedings of the International Conference on Multimedia and Human Computer Interaction. International ASET, 59-1. https://www.researchgate.net/publication/258847921
Asosheha, A., Bagherpour, S., & Yahyapour, N. (2008). Extended acceptance models for recommender system adaption, case of retail and banking service in Iran. WSEAS transactions on business and economics, 5(5), 189–200. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.4890&rep=rep1&type=pdf
Baabdullah, A. M., Alalwan, A. A., Rana, N. P., Kizgin, H., & Patil, P. (2019). Consumer use of mobile banking (M-Banking) in Saudi Arabia: Towards an integrated model. International Journal of Information Management, 44, 38–52. https://doi.org/10.1016/j.ijinfomgt.2018.09.002
Benslama, T., & Jallouli, R. (2020). Clustering of Social Media Data and Marketing Decisions. In M. A. Bach Tobji, R. Jallouli, A. Samet, M. Touzani, V. A. Strat, & P. Pocatilu (Eds), Digital Economy. Emerging Technologies and Business Innovation, 53–65. Springer International Publishing. https://doi.org/10.1007/978-3-030-64642-4_5
Blom, J. (2000). Personalization: a taxonomy. In CHI'00 Extended Abstracts on Human Factors in Computing Systems, 313–314. https://doi.org/10.1145/633292.633483
Blom, J. O., & Monk, A. F. (2003). Theory of personalization of appearance: Why users personalize their PCs and mobile phones. Human-computer interaction, 18(3), 193–228. https://doi.org/10.1207/S15327051HCI1803_1
Boonsiritomachai, W., & Pitchayadejanant, K. (2017). Determinants affecting mobile banking adoption by generation Y based on the Unified Theory of Acceptance and Use of Technology Model modified by the Technology Acceptance Model concept. Kasetsart Journal of Social Sciences. https://doi.org/10.1016/j.kjss.2017.10.005
Brown, S. A., & Venkatesh, V. (2005). A model of adoption of technology in the household: A baseline model test and extension incorporating household life cycle. Management Information Systems Quarterly, 29(3), 11. https://aisel.aisnet.org/misq/vol29/iss3/11/
Chang, V., Baudier, P., Zhang, H., Xu, Q., Zhang, J., & Arami, M. (2020). How Blockchain can impact financial services–The overview, challenges and recommendations from expert interviewees. Technological Forecasting and Social Change, 158, 120166. https://doi.org/10.1016/j.techfore.2020.120166
Chebil, M., Jallouli, R., Bach Tobji, M., & Ben N’cir, C. (2021). Topic Modeling of Marketing Scientific Papers: An Experimental Survey, Digital Economy. Emerging Technologies and Business Innovation: 6th International Conference on Digital Economy, ICDEc 2021, Tallinn, Estonia, Proceedings, 147–171. https://doi.org/10.1007/978-3-030-92909-1_10
Chellappa, R. K., & Sin, R. G. (2005). Personalization versus privacy: An empirical examination of the online consumer’s dilemma. Information technology and management, 6(2), 181–202. https://doi.org/10.1007/s10799-005-5879-y
Cheng, Y., Sharma, S., Sharma, P., & Kulathunga, K. M. M. C. B. (2020). Role of personalization in continuous use intention of Mobile news apps in India: Extending the UTAUT2 model. Information, 11(1), 33. https://doi.org/10.3390/info11010033
Curran, T., & Allen, J. (2017). Family communication patterns, self-esteem, and depressive symptoms: The mediating role of direct personalization of conflict. Communication Reports, 30(2), 80–90. http:// doi.org/10.1080/08934215.2016.1225224
Dauda, S. Y., & Lee, J. (2015). Technology adoption: A conjoint analysis of consumers׳ preference on future online banking services. Information Systems, 53, 1–15. https://doi.org/10.1016/j.is.2015.04.006
Davenport, T., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48(1), 24–42. https://doi.org/10.1007/s11747-019-00696-0
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319–340. https://doi.org/10.2307/249008
Desai, D. (2019). An empirical study of website personalization effect on users intention to revisit E-commerce website through cognitive and hedonic experience. In Data Management, Analytics and Innovation, 3-19. Springer, Singapore. https://doi.org/10.1007/978-
Dodds, W. B., Monroe, K. B., and Grewal, D. 1991. Effects of Price, Brand, and Store Information on Buyers, Journal of Marketing Research, 28(3), 307–319. https://doi.org/10.1177/002224379102800305
Gallego Vico, D., Huecas Fernández Toribio, G., & Salvachúa Rodríguez, J. (2012). Generating context-aware recommendations using banking data in a mobile recommender system. http://www.thinkmind.org/index.php?view=article&articleid=icds_2012_4_10_10075
Goh, T. T., Suki, N. M., & Fam, K. (2014). Exploring a consumption value model for Islamic mobile banking adoption. Journal of Islamic Marketing. https://doi.org/10.1108/JIMA-08-2013-0056
Guo, X., Sun, Y., Yan, Z., & Wang, N. (2012). Privacy-personalization paradox in adoption of mobile health service: the mediating role of trust. https://aisel.aisnet.org/pacis2012/27
Hagen, L., Uetake, K., Yang, N., Bollinger, B., Chaney, A. J., Dzyabura, D., & Zhu, Y. (2020). How can machine learning aid behavioral marketing research? Marketing Letters, 31(4), 361–370. https://doi.org/10.1007/s11002-020-09535-7
Haq, M. A., & Ghouri, A. M. (2018). Mobile Advertising Technology Acceptance Model (M-TAM): An Extension of TAM in Mobile Marketing Context. South Asian Journal of Management, 12(2), 188–209. https:/doi.org/10.21621/sajms.2018122.05
Hariyanti, A. O., Hidayatullah, S., & Prasetya, D. A. (2020). Analysis of the Acceptance and Use of Mobile Banking Services Using the Unified Theory of Acceptance and Use of Technology (Case Study of Bank Jatim Pasuruan Branch). Research Journal of Advanced Engineering and Science, 5(1), 254–262. https://lppm.unmer.ac.id/webmin/assets/uploads/lj/LJ202101091610162774635.pdf
Hmoud, B. I., & Várallyai, L. (2020). Artificial Intelligence in Human Resources Information Systems: Investigating its Trust and Adoption Determinants. International Journal of Engineering and Management Sciences, 5(1), 749–765. https://doi.org/10.21791/IJEMS.2020.1.65
Huang, M. H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49(1), 30–50. https://doi.org/10.1007/s11747-020-00749-9
Islam, M. M. (2017). Exploring influencing factors towards intention and use of mobile internet for youth consumers in Bangladesh. Universal Journal of Management, 5(1), 39–47. https://doi.org/10.13189/ujm.2017.050105
Kibria, M. G., Nguyen, K., Villardi, G. P., Zhao, O., Ishizu, K., & Kojima, F. (2018). Big data analytics, machine learning, and artificial intelligence in next-generation wireless networks. IEEE Access, 6, 32328–32338. https://doi.org/10.1109/ACCESS.2018.2837692
Krishnaraju, V., Mathew, S. K., & Sugumaran, V. (2016). Web personalization for user acceptance of technology: An empirical investigation of E-government services. Information Systems Frontiers, 18(3), 579–595. https://doi.org/10.1007/s10796-015-9550-9
Kumar, V., Ramachandran, D., & Kumar, B. (2020). Influence of new-age technologies on marketing: A research agenda. Journal of Business Research. https://doi.org/10.1016/j.jbusres.2020.01.007
Lee, G. G., & Lin, H. F. (2005). Customer perceptions of e-service quality in online shopping. International Journal of Retail & Distribution Management. https://doi.org/10.1108/09590550510581485
Limayem, M., Hirt, S. G., & Cheung, C. M. (2007). How habit limits the predictive power of intention: The case of information systems continuance. MIS quarterly, 31(4), 705–737. https://doi.org/10.2307/25148817
Lo, F. Y., & Campos, N. (2018). Blending Internet-of-Things (IoT) solutions into relationship marketing strategies. Technological Forecasting and Social Change, 137, 10–18. https://doi.org/10.1016/j.techfore.2018.09.029
Merhi, M., Hone, K., & Tarhini, A. (2019). A cross-cultural study of the intention to use mobile banking between Lebanese and British consumers: Extending UTAUT2 with security, privacy and trust. Technology in Society, 59, 101151. https://doi.org/10.1016/j.techsoc.2019.101151
Motiwalla, L. F., Albashrawi, M., & Kartal, H. B. (2019). Uncovering unobserved heterogeneity bias: Measuring mobile banking system success. International Journal of Information Management, 49, 439–451. https://doi.org/10.1016/j.ijinfomgt.2019.07.005
Nair, R. S., & Fasal, S. (2017). Mobile Banking and its Adopting Challenges. International Journal of Computer Applications, 160(4), 24–30. https://doi.org/10.5120/IJCA2017913036
Oberoi, P., Patel, C., & Haon, C. (2017). Technology sourcing for website personalization and social media marketing: A study of e-retailing industry. Journal of Business Research, 80, 10–23. https://doi.org/10.1016/j.jbusres.2017.06.005
Petropoulos, A., Siakoulis, V., Stavroulakis, E., & Vlachogiannakis, N. E. (2020). Predicting bank insolvencies using machine learning techniques. International Journal of Forecasting, 36(3), 1092–1113. https://doi.org/10.1016/j.ijforecast.2019.11.005
Phan, H., Tran, M., Hoang, V., & Dang, T. (2020). Determinants influencing customers' decision to use mobile payment services: The case of Vietnam. Management Science Letters, 10(11), 2635–2646. https://doi.org/10.5267/j.msl.2020.3.029
Pimenidis, E., Polatidis, N., & Mouratidis, H. (2019). Mobile recommender systems: Identifying the major concepts. Journal of Information Science, 45(3), 387–397. https://doi.org/10.1177/0165551518792213
Riegger, A. S., Klein, J. F., Merfeld, K., & Henkel, S. (2021). Technology-enabled personalization in retail stores: Understanding drivers and barriers. Journal of Business Research, 123, 140–155. https://doi.org/10.1016/j.jbusres.2020.09.039
Rogers, E. M (1995). Diffusion of Innovations. Fourth edition. New York: The Free Press. https://doi.org/10.4018/978-1-4666-8156-9.ch016
Rust, R. T. (2020). The future of marketing. International Journal of Research in Marketing, 37(1), 15–26. https://doi.org/10.1016/j.ijresmar.2019.08.002
Saeed, K. A. (2011). Understanding the Adoption of Mobile Banking Services: An Empirical Assessment. In AMCIS. https://aisel.aisnet.org/amcis2011_submissions/5
Saeed, M. A. Y., & Bekhet, H. A. (2018). Influencing Factors of Mobile Marketing among Young Malaysian Customers. Australian Journal of Basic and Applied Sciences, 12(9), 63–72. https://doi.org/10.22587/ajbas.2018.12.9.11
Salem, M. Z., Baidoun, S., & Walsh, G. (2019). Factors affecting Palestinian customers’ use of online banking services. International Journal of Bank Marketing. https://doi.org/10.1108/IJBM-08-2018-0210
Shanahan, T., Tran, T. P., & Taylor, E. C. (2019). Getting to know you: Social media personalization as a means of enhancing brand loyalty and perceived quality. Journal of Retailing and Consumer Services, 47, 57–65. https://doi.org/10.1016/j.jretconser.2018.10.007
Sheng, H., Nah, F. F. H., & Siau, K. (2008). An experimental study on ubiquitous commerce adoption: Impact of personalization and privacy concerns. Journal of the Association for Information Systems, 9(6), 15. https://doi.org/10.17705/1jais.00161
Shi, S., He, D., Li, L., Kumar, N., Khan, M. K., & Choo, K. K. R. (2020). Applications of blockchain in ensuring the security and privacy of electronic health record systems: A survey. Computers & Security, 101966. https://doi.org/10.1016/j.cose.2020.101966
Sung, J., Grinter, R. E., & Christensen, H. I. (2009). "Pimp My Roomba" designing for personalization. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 193–196. https://doi.org/10.1145/1518701.1518732
Sutanto, J., Palme, E., Tan, C. H., & Phang, C. W. (2013). Addressing the personalization-privacy paradox: An empirical assessment from a field experiment on smartphone users. MIS quarterly, 37(4), 1141–1164. https://www.jstor.org/stable/43825785
Trivedi, J. P., & Trivedi, H. (2018). Investigating the factors that make a fashion app successful: The moderating role of personalization. Journal of Internet Commerce, 17(2), 170–187. https://doi.org/10.1080/15332861.2018.1433908
Tyrväinen, O., Karjaluoto, H., & Saarijärvi, H. (2020). Personalization and hedonic motivation in creating customer experiences and loyalty in omnichannel retail. Journal of Retailing and Consumer Services, 57, 102233. https://doi.org/10.1016/j.jretconser.2020.102233
Venkatesh, V., Ramesh, V., & Massey, A. P. (2003). Understanding usability in mobile commerce. Communications of the ACM, 46(12), 53–56. https://doi.org/10.1145/953460.953488
Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS quarterly, 36(1), 157–178. https://doi.org/10.2307/41410412
Wang, M., Cho, S., & Denton, T. (2017). The impact of personalization and compatibility with past experience on e-banking usage. International Journal of Bank Marketing. https://doi.org/10.1108/IJBM-04-2015-0046
Widuri, R., Kholil, M., & Nurbani, R. G. K. (2020). The Use of Unified Theory of Acceptance and Use of Technology in the Adoption of M-Payment. Proceedings of the International Conference on Industrial Engineering and Operations Management Dubai, UAE, March 2020, 10–12. http://www.ieomsociety.org/ieom2020/papers/26.pdf
Xu, H., Luo, X. R., Carroll, J. M., & Rosson, M. B. (2011). The personalization privacy paradox: An exploratory study of decision making process for location-aware marketing. Decision support systems, 51(1), 42–52. https://doi.org/10.1016/j.dss.2010.11.017
Zalloum, L., Alghadeer, H., & Nusairat, N. (2019). The Effect of Using Mobile Banking Services Applications on Electronic Word of Mouth: The Mediating Role of Perceived Trust. International Business Research, 12(9), 62–80. https://doi.org/10.5539/ibr.v12n9p62