Implementation of a Cross-Platform Development Board for Embedded Internet-of-Things Systems

Main Article Content

Jorge Enrique Herrera Rubio https://orcid.org/0000-0002-9661-5450
Steven Antonio Florez Prieto

Keywords

Development, Internet of Things, Embedded, Board, Wireless

Abstract

A prototype of a printed circuit board (PCB) with radio frequency electromagnetic compatibility specifications is designed using the top-down methodology for the two-layer Internet of Things with free open-source hardware and software, using the following techniques: requirements, analysis, modular design, schematics, manufacturing and functional testing. The study of the influence of the design parameters is carried out applying the standards of the Printed Circuit Institute and the characteristics of the technological production process for a free multiplatform for wireless networks. Finally, functional tests of the universal asynchronous transmit and receive (UART) communication with the microcontroller, the radio modules, the general-purpose input and output pins, and the over-the-air (OTA) configuration are performed to program the board wirelessly, without the need of a universal serial bus (USB) interface.


 

Downloads

Download data is not yet available.
Abstract 171 | 828-PDF-v12n1pp463-485 Downloads 18

References

Babos, D. V., Cruz-Conesa, A., Pereira-Filho, E. R., & Anzano, J. M. (2020). Direct determination of Al and Pb in waste printed circuit boards (PCB) by laser-induced breakdown spectroscopy (LIBS): Evaluation of calibration strategies and economic - environmental questions. Journal of Hazardous Materials, 399(March), 122831. https://doi.org/10.1016/j.jhazmat.2020.122831
Balanis, C. A. (2016). Antenna theory: analysis and design. John Wiley & Sons.
Bloom, G., Alsulami, B., Nwafor, E., & Bertolotti, I. C. (2018). Design patterns for the industrial Internet of Things. IEEE International Workshop on Factory Communication Systems - Proceedings, WFCS, 2018-June, 1–10. https://doi.org/10.1109/WFCS.2018.8402353
Care, R. D., Hendriks, T., Muller, G., & Hole, E. (2017). Top-Down versus Bottom-Up Approaches to Architecting. Recovered from https://www.architectingforum.org/whitepapers/SAF_WhitePaper_2017_19.pdf
Dalmaris, P. (2021). Kicad Like a Pro, Third Edition. www.techexplorations.com
De Nardis, L., Mohammadpour, A., Caso, G., Ali, U., & Di Benedetto, M. G. (2022). Internet of Things Platforms for Academic Research and Development: A Critical Review. Applied Sciences (Switzerland), 12(4). https://doi.org/10.3390/app12042172
Dong, Y., Bao, C., & Kim, W. S. (2018). Sustainable Additive Manufacturing of Printed Circuit Boards. Joule, 2(4), 579–582. https://doi.org/10.1016/j.joule.2018.03.015
Dudhane, T. M., & Ravi, T. (2019). Design and implementation of extended 16 bit co-operative arithmetic and logic unit (CALU) for 16 bit instructions. Journal of Low Power Electronics, 15(3), 309–314. https://doi.org/10.1166/jolpe.2019.1613
Eisenbarth, D., Borges Esteves, P. M., Wirth, F., & Wegener, K. (2019). Spatial powder flow measurement and efficiency prediction for laser direct metal deposition. Surface and Coatings Technology, 362(December 2018), 397–408. https://doi.org/10.1016/j.surfcoat.2019.02.009
Federico, G., Caratelli, D., Theis, G., & Smolders, A. B. (2021). A Review of Antenna Array Technologies for Point-to-Point and Point-to-Multipoint Wireless Communications at Millimeter-Wave Frequencies. International Journal of Antennas and Propagation, 2021. https://doi.org/10.1155/2021/5559765
Guz, M. (2021). Practical Considerations for Design and Layout of High Power Digital PCBs. IEEE Power Electronics Magazine, June, 53–59.
Hernández Sampieri, R., Fernandez Collado, C., & Baptista Lucio, M. del P. (2018). Metodología de la investigación. Sixth Edition. McGraw Hill Education, México.
Ho, W., & Ma, X. (2018). The state-of-the-art integrations and applications of the analytic hierarchy process. European Journal of Operational Research, 267(2), 399–414. https://doi.org/10.1016/j.ejor.2017.09.007
Hobbs, C. (2020). Embedded Software Development for Safety-Critical Systems. Second Edition. CRC Press.
IPC-2252 Task Group & High Frequency Design Task Group. (2002). IPC-2252 Design Guide for RF/Microwave Circuit Boards, 2–9.
Khandpur, R. (1992). Printed circuit Boards. In McGraw-Hill (Vol. 71, Issue 6). Recovered from https://digital-library.theiet.org/docserver/fulltext/me/71/6/19920110.pdf?expires=1708177933&id=id&accname=guest&checksum=3B0643F479AAD011E5BFE5605CA29579
Khater, M. A. (2020). High-Speed Printed Circuit Boards: A Tutorial. IEEE Circuits and Systems Magazine, 20(3), 34–45. https://doi.org/10.1109/MCAS.2020.3005484
Kocer, S., Dundar, O., & Butuner, R. (eds). (2021). Programmable Smart Microcontroller Cards. www.isres.org. Recovered from https://www.isres.org/programmable-smart-microcontoller-cards-18-b.html
Machado, F., Malpica, N., & Borromeo, S. (2019). Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts. PLoS ONE, 14(12), 1–30. https://doi.org/10.1371/journal.pone.0225795
Marwedel, P. (2011). Embedded Design System: Embedded Systems Foundations of Cyber-Physical Systems, and the Internet of Things. In Springer. https://doi.org/10.1007/978-3-030-60910-8
Mehri, M. (2021). Stochastic estimation of total radiated power from PCB signal/PDN layout using EMI radiation resistance. Microelectronics Journal, 116(September), 105256. https://doi.org/10.1016/j.mejo.2021.105256
Mukrimaa, S. Khan, W., Abbas, G., Rahman, K., Hussain, G. & Edwin, C. (2020). Functional Reverse Engineering of Machine Tools. CRC Press Taylor & Francis Group.
Nasution, M. D. T. P., Rossanty, Y., Achmad Daengs, G. S., Sahat, S., Rosmawati, R., Kurniasih, N., Ahmar, A. S., Susanto, E., Novitasari, Y., Suhardi, S., Kadir, I. A., & Rahim, R. (2018). Decision support rating system with Analytical Hierarchy Process method. International Journal of Engineering and Technology (UAE), 7, 105–108. https://doi.org/10.14419/ijet.v7i2.3.12629
Ojo, M. O., Giordano, S., Procissi, G., & Seitanidis, I. N. (2018). A Review of Low-End, Middle-End, and High-End IOT Devices. IEEE Access, 6, 70528–70554. https://doi.org/10.1109/ACCESS.2018.2879615
Onshaunjit, J., & Srinonchat, J. (2022). Algorithmic scheme for concurrent detection and classification of printed circuit board defects. Computers, Materials and Continua, 71(1), 355–367. https://doi.org/10.32604/cmc.2022.017698
Qadir, Z., Le, K. N., Saeed, N., & Munawar, H. S. (2023). Towards 6G Internet of Things: Recent advances, use cases, and open challenges. ICT Express, 9(3), 296–312. https://doi.org/10.1016/j.icte.2022.06.006
Razmhosseini, M., Bhattacharya, A., & Vaughan, R. G. (2020). Practical Diversity Design for PCB IoT Terminals. IEEE Open Journal of Antennas and Propagation, 1(September), 627–643. https://doi.org/10.1109/OJAP.2020.3035196
Rivadeneyra, A., Romero, F. J., Haider, M., Bhatt, V. D., Salmeron, J. F., Rodriguez, N., Morales, D. P., & Becherer, M. (2022). Reconfigurable Electronic Platforms: A Top-Down Approach to Learn about Design and Integration of Electronic Systems. Micromachines, 13(3), 1–10. https://doi.org/10.3390/mi13030442
Sathyakumar, N., Prasath Balaji, K., Ganapathi, R., & Pandian, S. R. (2018). A Build-Your-Own Three Axis CNC PCB Milling Machine. Materials Today: Proceedings, 5(11), 24404–24413. https://doi.org/10.1016/j.matpr.2018.10.236
Scheipel, T., & Baunach, M. (2019). PCB : An Automated Printed Circuit Board Generation Approach for Embedded Systems Prototyping. https://www.researchgate.net/profile/Tobias-Scheipel/publication/331374815_papagenoPCB_An_Automated_Printed_Circuit_Board_Generation_Approach_for_Embedded_Systems_Prototyping/links/5c9a3dc4a6fdccd4603cc1d3/papagenoPCB-An-Automated-Printed-Circuit-Board-Generation-Approach-for-Embedded-Systems-Prototyping.pdf
Silvestre, S., Salazar, J., & Marzo, J. (2019). Printed Circuit Board (PCB)Design Process and Fabrication. In Modernisation of VET through Collaboration with the Industry. https://upcommons.upc.edu/bitstream/handle/2117/134361/LM06_R_EN.pdf?sequence=1
Sis, S. A., Ustuner, F., & Demirel, E. (2022). EMI Reducing Interdigital Slot on Reference Planes of the PCBs. IEEE Transactions on Electromagnetic Compatibility, 64(1), 219–229. https://doi.org/10.1109/TEMC.2021.3083654
Tatariants, M., Yousef, S., Denafas, G., & Bendikiene, R. (2018). Separation and purification of metal and fiberglass extracted from waste printed circuit boards using milling and dissolution techniques. Environmental Progress and Sustainable Energy, 37(6), 2082–2092. https://doi.org/10.1002/ep.12899
Tran, T. S., Dutta, N. K., & Choudhury, N. R. (2018). Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing techniques and applications. Advances in Colloid and Interface Science, 261, 41–61. https://doi.org/10.1016/j.cis.2018.09.003
Vasilyev, F., Isaev, V., & Korobkov, M. (2021). The influence of the PCB design and the process of their manufacturing on the possibility of a defect-free production. Przeglad Elektrotechniczny, 97(3), 91–96. https://doi.org/10.15199/48.2021.03.18
Vasilyev, F. V., Medvedev, A. M., Barakovsky, F. A., & Korobkov, M. A. (2021). Development of the digital site for chemical processes in the manufacturing of printed circuit boards. Inventions, 6(3), 48. https://doi.org/10.3390/inventions6030048
Vermesan, O. (2018). Advancing IoT Platforms Interoperability, New York, USA: River Publishers https://library.oapen.org/bitstream/handle/20.500.12657/59744/9781000794519.pdf
Waage, A., & Færø, S. (2019). BO19E-36 Design of the ALOT PCB. Thesis, Western Norway University of Applied Sciences. Available at https://hvlopen.brage.unit.no/hvlopen-xmlui/bitstream/handle/11250/2601997/Waage_Faeroe.pdf
Wang, D. H., Tang, L. K., Peng, Y. H., & Yu, H. Q. (2019). Principle and structure of a printed circuit board process–based piezoelectric microfluidic pump integrated into printed circuit board. Journal of Intelligent Material Systems and Structures, 30(17), 2595–2604. https://doi.org/10.1177/1045389X19869519
Yang, R., Wei, X.-C., Shu, Y.-F., & Yang, Y.-B. (2019). A High-Frequency and High Spatial Resolution Probe Design for EMI Prediction. IEEE Transactions on Instrumentation and Measurement, 68(8), 3012–3019. https://doi.org/10.1109/TIM.2018.2869181