Natural Language Processing for Detecting Brand Hate Speech

Main Article Content

Latifa Mednini https://orcid.org/0000-0002-6479-9558
Zouhaira Noubigh https://orcid.org/0000-0002-5106-988X
Mouna Damak Turki https://orcid.org/0000-0001-9365-2849

Keywords

Brand hate, NLP, Sentiments analysis, AI, GPT2

Abstract

Brand hate is a complex feeling that is not easy for companies to recognize. Mednini and Turki (2022) have confirmed that hate can originate from genuine brand haters or an employee who works with competitors, to spread negative word-of-mouth in communities. That is why it is important to detect this emotion. This study aims to identify brand hate speech based on NLP techniques to detect consumer hate sentiment using a chatbot. We present a methodology for fine-tuning the GPT 2 language model for sentiment analysis through text classification. Experiments are conducted on datasets in three languages — Arabic, French, and English — within the context of consumer consumption. The model is retrained on labelled data to effectively identify brand hate sentiment. Furthermore, we evaluate our chatbot by conducting semi-structured interviews with diverse consumers. The experimental results demonstrate a significant improvement in sentiment analysis performance, highlighting increased accuracy when compared to other models and baseline approaches. We achieved an accuracy rate of 0.98 in the training set and 0.84 in the testing set, showcasing the utility of using GPT-2 in this context. This research contributes to the capability of managers to identify brand hate speech, and proactively avert potential brand crises. 

Downloads

Download data is not yet available.
Abstract 538 | 859-PDF-v12n1pp486-509 Downloads 24

References

Abbasi, A. Z., Fayyaz, M. S., Ting, D. H., Munir, M., Bashir, S., & Zhang, C. (2023). The moderating role of complaint handling on brand hate in the cancel culture. Asia-Pacific Journal of Business Administration, 15(1), 46-71. https://doi.org/10.1108/APJBA-06-2021-0246
Abro, S., Shaikh, S., Khand, Z. H., Zafar, A., Khan, S., & Mujtaba, G. (2020). Automatic hate speech detection using machine learning: A comparative study. International Journal of Advanced Computer Science and Applications, 11(8). https://doi.org10.14569/ijacsa.2020.0110861
Agarwal, S., & Sureka, A. (2015). Using KNN and SVM based one-class classifier for detecting online radicalization on Twitter. In Distributed Computing and Internet Technology: 11th International Conference, ICDCIT 2015, Bhubaneswar, India, February 5-8, 2015. Proceedings 11 (pp. 431–442). Springer International Publishing. https://doi.org/10.1007/978-3-319-14977-6_47
Ahmed, S., & Hashim, S. (2018). The moderating effect of brand recovery on brand hate and desire for reconciliation: a PLS-MGA approach. International Journal of Business and Society, 19(3), 833–850. https://www.researchgate.net/profile/Sheraz-Ahmed-3/publication/329944192_The_moderating_effect_of_brand_recovery_on_brand_hate_and_desire_for_reconciliation_A_PLS-MGA_approach
Akrout, H., & Mrad, M. (2023). Measuring brand hate in a cross-cultural context: Emic and Etic scale development and validation. Journal of Business Research, 154, 113289. https://doi.org/10.1016/j.jbusres.2022.08.053
Ali, S., Attiq, S., & Talib, N. (2020). Antecedents of brand hate: mediating role of customer dissatisfaction and moderating role of narcissism. Pakistan Journal of Commerce and Social Sciences (PJCSS), 14(3), 603–628. http://hdl.handle.net/10419/224953
Ali, R., Farooq, U., Arshad, U., Shahzad, W., & Beg, M. O. (2022). Hate speech detection on Twitter using transfer learning. Computer Speech & Language, 74, 101365. https://doi.org/10.1016/j.csl.2022.101365
Al-Makhadmeh, Z., & Tolba, A. (2020). Automatic hate speech detection using killer natural language processing optimizing ensemble deep learning approach. Computing, 102, 501–522. https://doi.org/10.1007/s00607-019-00745-0
Amari, R., Noubigh, Z., Zrigui, S., Berchech, D., Nicolas, H., & Zrigui, M. (2022, September). Deep Convolutional Neural Network for Arabic Speech Recognition. In International Conference on Computational Collective Intelligence (pp. 120–134). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-16014-1_11.
Antit, C., Mechti, S., & Faiz, R. (2022). TunRoBERTa: A Tunisian Robustly Optimized BERT Approach Model for Sentiment Analysis. Proceedings of the 2nd International Conference on Industry 4.0 and Artificial Intelligence (ICIAI 2021). https://doi.org/10.2991/aisr.k.220201.040
Alonso, M. A., Vilares, D., Gómez-Rodríguez, C., & Vilares, J. (2021). Sentiment analysis for fake news detection. Electronics, 10(11), 1348. https://doi.org/10.3390/electronics10111348.
Ayo, F. E., Folorunso, O., Ibharalu, F. T., & Osinuga, I. A. (2020). Machine learning techniques for hate speech classification of twitter data: State-of-the-art, future challenges and research directions. Computer Science Review, 38, 100311. https://doi.org/10.1016/j.cosrev.2020.100311.
Aziz, R., & Rahman, Z. (2022). Brand hate: a literature review and future research agenda. European Journal of Marketing, 56(7), 2014–2051. https://doi.org/10.1108/EJM-03-2021-0189.
Bahani, M., El Ouaazizi, A., & Maalmi, K. (2023). The effectiveness of T5, GPT-2, and BERT on text-to-image generation task. Pattern Recognition Letters, 173, 57–63. https://doi.org/10.1016/j.patrec.2023.08.001.
Ben-Ze'ev, A. (2001). The subtlety of emotions. MIT press.
Bharathi Mohan, G., Prasanna Kumar, R., Parathasarathy, S., Aravind, S., Hanish, K. B., & Pavithria, G. (2023). Text Summarization for Big Data Analytics: A Comprehensive Review of GPT 2 and BERT Approaches. Data Analytics for Internet of Things Infrastructure, 247–264. https://doi.org/10.1007/978
Bangura, M., Barabashova, K., Karnysheva, A., Semczuk, S., & Wang, Y. (2023). Automatic Generation of German Drama Texts Using Fine Tuned GPT-2 Models. arXiv preprint arXiv:2301.03119. https://doi.org/10.48550/arXiv.2301.03119.
Castillo, C., Mendoza, M., & Poblete, B. (2011, March). Information credibility on twitter. In Proceedings of the 20th international conference on World wide web (pp. 675-684). https://doi.org/10.1145/1963405.1963500
Chaurasia, S., Jain, S., Vishwkarma, H. O., & Singh, N. (2023). Conversational AI Unleashed: A Comprehensive Review of NLP-Powered Chatbot Platforms. Iconic Research and Engineering Journals, 7(3), 1–8.
Chaudhary, M., Saxena, C., & Meng, H. (2021). Countering online hate speech: An nlp perspective. arXiv preprint arXiv:2109.02941. https://doi.org/10.48550/arXiv.2109.02941
Chung, Y. L., Kuzmenko, E., Tekiroglu, S. S., & Guerini, M. (2019). CONAN - COunter NArratives through Nichesourcing: a Multilingual Dataset of Responses to Fight Online Hate Speech. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2819–2829, Florence, Italy. Association for Computational Linguistics. https://doi.org/10.48550/arXiv.1910.03270
Del Vigna12, F., Cimino23, A., Dell’Orletta, F., Petrocchi, M., & Tesconi, M. (2017, January). Hate me, hate me not: Hate speech detection on Facebook. In Proceedings of the first Italian conference on cybersecurity (ITASEC17) (pp. 86-95).
Dunmire, P. L. (2012). Political discourse analysis: Exploring the language of politics and the politics of language. Language and Linguistics Compass, 6(11), 735–751. https://doi.org/10.1002/lnc3.365
Ekman, P. (1992). An argument for basic emotions-. Cognition and Emotion, 6(3–4), 169–200. https://doi.org/10.1080/02699939208411068
Falcetta, F. S., de Almeida, F. K., Lemos, J. C. S., Goldim, J. R., & da Costa, C. A. (2023). Automatic documentation of professional health interactions: A systematic review. Artificial Intelligence in Medicine, 137, 102487. https://doi.org/10.1016/j.artmed.2023.102487
Fetscherin, M. (2019). The five types of brand hate: How they affect consumer behavior. Journal of Business Research, 101, 116–127. https://doi.org/10.1016/j.jbusres.2019.04.017.
Founta, A. M., Djouvas, C., Chatzakou, D., Leontiadis, I., Blackburn, J., Stringhini, G., Vakali, A., Sirivianos, M., & Kourtellis, N. (2018). Large scale crowdsourcing and characterization of twitter abusive behavior. In Twelfth International AAAI Conference on Web and Social Media. https://doi.org/10.1609/icwsm.v12i1.14991
Giachos, I., Papakitsos, E. C., Savvidis, P., & Laskaris, N. (2023). Inquiring Natural Language Processing Capabilities on Robotic Systems through Virtual Assistants: A Systemic Approach. Journal of Computer Science Research, 5(2), 28–36. https://doi.org/10.30564/jcsr.v5i2.5537.
Islam, S., Elmekki, H., Elsebai, A., Bentahar, J., Drawel, N., Rjoub, G., & Pedrycz, W. (2023). A comprehensive survey on applications of transformers for deep learning tasks. Expert Systems with Applications, 241, 122666. https://doi.org/10.1016/j.eswa.2023.122666.
Hurlock, J., & Wilson, M. (2011). Searching twitter: Separating the tweet from the chaff. In Proceedings of the International AAAI Conference on Web and Social Media (Vol. 5, No. 1, pp. 161–168). https://doi.org/10.1609/icwsm.v5i1.14117
Jain, P. K., Pamula, R., & Srivastava, G. (2021). A systematic literature review on machine learning applications for consumer sentiment analysis using online reviews. Computer science review, 41, 100413. https://doi.org/10.1016/j.cosrev.2021.100413
Jigsaw. (2017). Perspective API. https://www.perspectiveapi.com/. Accessed: 2022-01-05.
Kaur, G., & Sharma, A. (2023). Has: Hybrid analysis of sentiments for the perspective of customer review summarization. Journal of Ambient Intelligence and Humanized Computing, 14(9), 11971–11984.https://doi.org/10.1007/s12652-022-03748-6
Kucuk, S. U. (2019a). Brand Hate: Navigating Consumer Negativity in the Digital World. Palgrave Macmillan, Cham.
Kucuk, S. U. (2019b). Consumer brand hate: Steam rolling whatever I see. Psychology & Marketing, 36(5), 431–443. https://doi.org/10.1002/mar.21175
Kudaibergenova, S., Madaliyeva, Z., Baimoldina, L., Sadykova, N., & Sadvakassova, Z. (2023). Procedure for Identifying Negative Emotional States in Military Personnel. Bangladesh, Journal of Medical Science, 22(3). https://doi.org/10.3329/bjms.v22i3.65327
Lee, K., Eoff, B., & Caverlee, J. (2011). Seven months with the devils: A long-term study of content polluters on twitter. In Proceedings of the international AAAI conference on web and social media (Vol. 5, No. 1, pp. 185–192). https://doi.org/10.1609/icwsm.v5i1.14106.
Liu, X., Shin, H., & Burns, A. C. (2021). Examining the impact of luxury brand’s social media marketing on customer engagement: Using big data analytics and natural language processing. Journal of Business Research, 125, 815–826. https://doi.org/10.1016/j.jbusres.2019.04.042.
Ma, L., Pahlevan Sharif, S., Ray, A., & Khong, K. W. (2023). Investigating the relationships between MOOC consumers' perceived quality, emotional experiences, and intention to recommend: an NLP-based approach. Online Information Review, 47(3), 582–603. https://doi.org/10.1108/OIR-09-2021-0482
Madichetty, S., & Sridevi, M. (2020). Improved classification of crisis-related data on Twitter using contextual representations. Procedia computer science, 167, 962–968. https://doi.org/10.1016/j.procs.2020.03.395.
McNamee, L. G., Peterson, B. L., & Peña, J. (2010). A call to educate, participate, invoke and indict: Understanding the communication of online hate groups. Communication Monographs, 77(2), 257–280. https://doi.org/10.1080/03637751003758227
Mednini, L., & Turki, M. D. (2022, May). What Leads Customer to Create and Participate in Anti-brand Community: A Netnographic Approach. In Bach Tobji, M. A., Jallouli, R., Strat, V. A., Soares, A. M., & Davidescu, A. A. (eds), Digital Economy. Emerging Technologies and Business Innovation. Lecture Notes in Business Information Processing, vol. 461. Springer, Cham. https://doi.org/10.1007/978-3-031-17037-9_11
Mednini, L. & Damak Turki, M. (2024). How to transform brand haters into forgivers through emotional intelligence? Management Decision, 62(1), 183–199. https://doi.org/10.1108/MD-06-2022-0819
Mednini, L., & Hmida, I. C. B. (2023, May). Antecedents and Outcomes of Brand Hate: A Case of Anti-brand Community. In Jallouli, R., Bach Tobji, M. A., Belkhir, M., Soares, A. M., & Casais, B. (eds), Digital Economy. Emerging Technologies and Business Innovation. Lecture Notes in Business Information Processing, vol. 485. Springer, Cham. https://doi.org/10.1007/978-3-031-42788-6_14
Meel, P., & Vishwakarma, D. K. (2020). Fake news, rumor, information pollution in social media and web: A contemporary survey of state-of-the-arts, challenges and opportunities. Expert Systems with Applications, 153, 112986. https://doi.org/10.1016/j.eswa.2019.112986.
Mishra, S., Shukla, P., & Agarwal, R. (2022). Analyzing machine learning enabled fake news detection techniques for diversified datasets. Wireless Communications and Mobile Computing, 2022, 1–18. https://doi.org/10.1155/2022/1575365.
Mullah, N. S., & Zainon, W. M. N. W. (2021). Advances in machine learning algorithms for hate speech detection in social media: a review. IEEE Access, 9, 88364–88376. https://doi.org/10.1109/ACCESS.2021.3089515
Noubigh, Z., Mezghani, A., & Kherallah, M. (2021). Densely connected layer to improve VGGnet-based CRNN for Arabic handwriting text line recognition. International Journal of Hybrid Intelligent Systems, 17(3–4), 113–127. https://doi.org/10.3233/HIS-210009
Oriola, O., & Kotzé, E. (2020). Evaluating machine learning techniques for detecting offensive and hate speech in South African tweets. IEEE Access, 8, 21496–21509. https://doi.org/10.1109/ACCESS.2020.2968173
Parihar, A. S., Thapa, S., & Mishra, S. (2021, June). Hate speech detection using natural language processing: Applications and challenges. In 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 1302–1308). IEEE. https://doi.org/10.1109/ICOEI51242.2021.9452882
Patel, A., Oza, P., & Agrawal, S. (2023). Sentiment Analysis of Customer Feedback and Reviews for Airline Services using Language Representation Model. Procedia Computer Science, 218, 2459–2467. https://doi.org/10.1016/j.procs.2023.01.221.
Patel, N., & Trivedi, S. (2020). Leveraging Predictive Modeling, Machine Learning Personalization, NLP Customer Support, and AI Chatbots to Increase Customer Loyalty. Empirical Quests for Management Essences, 3(3), 1–24. https://doi.org/10.1016/j.procs.2023.01.221
Pease, J. L., Thompson, D., Wright-Berryman, J., & Campbell, M. (2023). User feedback on the use of a natural language processing application to screen for suicide risk in the emergency department. The journal of behavioral health services & research, 50(4), 548–554.
Peter, I.-K., & Petermann, F. (2018). Cyberbullying: A concept analysis of defining attributes and additional influencing factors. Computers in Human Behavior, 86, 350–366. https://doi.org/10.1016/j.chb.2018.05.013.
Quiroz, M., Patiño, R., Diaz-Amado, J., & Cardinale, Y. (2022). Group emotion detection based on social robot perception. Sensors, 22(10), 3749. https://doi.org/10.3390/s22103749
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding with unsupervised learning. Technical Report OpenAI. https://openai.com/blog/language-unsupervised/
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI blog, 1, 9. https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
Raghav, Y. Y., Tipu, R. K., Bhakhar, R., Gupta, T., & Sharma, K. (2024). The Future of Digital Marketing: Leveraging Artificial Intelligence for Competitive Strategies and Tactics. In The Use of Artificial Intelligence in Digital Marketing: Competitive Strategies and Tactics (pp. 249–274). IGI Global. https://10.4018/978-1-6684-9324-3.ch011
Raheman, A., Kolonin, A., Fridkins, I., Ansari, I., & Vishwas, M. (2022). Social media sentiment analysis for cryptocurrency market prediction. arXiv preprint arXiv:2204.10185. https://doi.org/10.48550/arXiv.2204.10185.
Rahimah, A., Dang, H. P., Nguyen, T. T., Cheng, J. M. S., & Kusumawati, A. (2023). The subsequent effects of negative emotions: from brand hate to anti-brand consumption behavior under moderating mechanisms. Journal of Product & Brand Management, 32(4), 618–631. https://doi.org/10.1108/JPBM-12-2021-3778.
Rempel, J. K., & Burris, C. T. (2005). Let me count the ways: An integrative theory of love and hate. Personal Relationships, 12(2), 297–313. https://doi.org/10.1111/j.1350-4126.2005.00116.x
Rodriguez, A., Chen, Y. L., & Argueta, C. (2022). FADOHS: framework for detection and integration of unstructured data of hate speech on Facebook using sentiment and emotion analysis. IEEE Access, 10, 22400–22419. https://doi.org/10.1109/ACCESS.2022.3151098
Roy, P. K., Tripathy, A. K., Das, T. K., & Gao, X. Z. (2020). A framework for hate speech detection using deep convolutional neural network. IEEE Access, 8, 204951–204962. https://doi.org/10.1109/ACCESS.2020.3037073
Scherer, K. R. (2022). Theory convergence in emotion science is timely and realistic. Cognition and Emotion, 36(2), 154–170. https://doi.org/10.1080/02699931.2021.1973378
Sebastian, M. P. (2023). Malayalam Natural Language Processing: Challenges in Building a Phrase-Based Statistical Machine Translation System. ACM Transactions on Asian and Low-Resource Language Information Processing, 22(4), 1–51. https://doi.org/10.1145/3579163.
Sharma, K. (2016). What causes extremist attitudes among Sunni and Shia Youth? Evidence from northern India. Program on Extremism, George Washington University. Retrieved from https://extremism.gwu.edu/sites/g/files/zaxdzs5746/files/downloads/Sharma.pdf
Sharma, I., Jain, K., Behl, A., Baabdullah, A., Giannakis, M., & Dwivedi, Y. (2023). Examining the motivations of sharing political deepfake videos: the role of political brand hate and moral consciousness. Internet Research, 33(5), 1727–1749. https://doi.org/10.1108/INTR-07-2022-0563.
Sternberg, R. J. (2003). A duplex theory of hate: Development and application to terrorism, massacres, and genocide. Review of general psychology, 7(3), 299–328. https://doi.org/10.1037/1089-2680.7.3.299
Sun, H., Zafar, M. Z., & Hasan, N. (2022). Employing natural language processing as artificial intelligence for analyzing consumer opinion toward advertisement. Frontiers in Psychology, 13, 856663. https://doi.org/10.3389/fpsyg.2022.856663
Tarasova, N. (2016). Classification of hate tweets and their reasons using SVM. Master’s thesis. Uppsala Universitet. https://www.diva-portal.org/smash/get/diva2:901098/FULLTEXT02.pdf
Yenduri, G., Ramalingam, M., Chemmalar Selvi, G., Supriya, Y., Srivastava, G., Maddikunta, P. K. R., ... & Athanasios, V. GPT (Generative Pre-trained Transformer)–A Comprehensive Review on Enabling Technologies, Potential Applications, Emerging Challenges, and Future Directions. arXiv:2305.10435, 1–40.
Zimand-Sheiner, D., Levy, S., & Eckhaus, E. (2021). Exploring negative spillover effects on stakeholders: A case study on social media talk about crisis in the food industry using data mining. Sustainability, 13(19), 10845. https://doi.org/10.3390/su131910845
Zhao, Z., Zhang, Z., & Hopfgartner, F. (2021, April). A comparative study of using pre-trained language models for toxic comment classification. In Companion Proceedings of the Web Conference 2021 (pp. 500–507). https://doi.org/10.1145/3442442.3452313